References
A B C |
D E F |
G H I |
J K L |
M N O |
P Q R |
S T U |
V W X |
Y Z |
A B C
Agyekum, A. K., and C. M. Nyachoti. 2017. Nutritional and metabolic consequences of feeding high-fiber diets to swine: A review. Engineering. 3:716–725. doi:10.1016/J.ENG.2017.03.010
Almeida, F. N., J. K. Htoo, J. Thomson, and H. H. Stein. 2013. Comparative amino acid digestibility in US blood products fed to weanling pigs. Animal Feed Science and Technology. 181:80–86. doi:10.1016/j.anifeedsci.2013.03.002
Almeida, F. N., R. C. Sulabo, and H. H. Stein. 2014. Amino acid digestibility and concentration of digestible and metabolizable energy in a threonine biomass product fed to weanling pigs. Journal of Animal Science. 92:4540–4546. doi:10.2527/jas.2013-6635
Aubry, P., J. L. Thompson, T. Pasma, M. C. Furness, J, Tataryn, 2017. Weight of the evidence linking feed to an outbreak of porcine epidemic diarrhea in Canadian swine herds. Journal of Swine Health and Production. 25:69-72.
Bergstrom, J. R., C. N. Groesbeck, J. M. Benz, M. D. Tokach, J. L. Nelssen, S. S. Dritz, J. M. DeRouchey, and R. D. Goodband. 2007. An evaluation of dextrose, lactose, and whey sources in phase 2 starter diets for weanling pigs. Kansas Agricultural Experiment Station Research Reports. 60-65.
Bertol, T. M., D. L. Zanotto, A. Coldebella, and J. V. Ludke. J.V. 2017. Development and validation of equations to predict the metabolizable energy value of corn for pigs. Journal of Animal Science. 95:291–301. doi:10.2527/jas.2016.0832
Bikker, P., A. W. Jongbloed, and J. van Baal. 2016. Dose-dependent effects of copper supplementation of nursery diets on growth performance and fecal consistency in weaned pigs. Journal of Animal Science. 94(Suppl. 3):181–186. doi:10.2527/jas.2015-9874
Blavi, L., D. Sola-Oriol, J. F. Perez, and H. H. Stein. 2017. Effects of zinc oxide and microbial phytase on digestibility of calcium and phosphorus in maize-based diets fed to growing pigs. Journal of Animal Science. 95:847–854. doi:10.2527/jas.2016.1149
Brazilian Tables for Poultry and Swine. 2017. Feedstuff composition and nutritional requirements. 4thed. H. S. Rostagno (ed). Department of Animal Science, UFV, Viçosa, MG, Brazil.
Bruininx, E. M. A. M, C. M. C. Van Der Peet-Schwering, J. W. Schrama, P. F. G. Vereijken, P. C. Vesseur, H. Everts, L. A. den Hartog, and A. C. Beynen. 2001. Individually measured feed intake characteristics and growth performance of group-housed weanling pigs: Effects of sex, initial body weight, and body weight distribution within groups. Journal of Animal Science. 79:301–308. doi:10.2527/2001.792301x
Bruininx, E. M. A. M., G. P. Binnendijk, C. M. C. Van Der Peet-Schwering, J. W. Schrama, L. A. Den Hartog, H. Everts, and A. C. Beynen. 2002. Effect of creep feed consumption on individual feed intake characteristics and performance of group-housed weanling pigs. Journal of Animal Science. 80:1413-1418. doi:10.2527/2002.8061413x
Carlson, M. S., C. A. Boren, C. Wu, C. E. Huntington, D. W. Bollinger, and T. L. Veum. 2004. Evaluation of various inclusion rates of organic zinc either as polysaccharide or proteinate complex on the growth performance, plasma, and excretion of nursery pigs. Journal of Animal Science. 82:1359–1366. doi:10.2527/2004.8251359x
Carney, E. E., C. N. Groesbeck, R. D. Goodband, M. D. Tokach, J. L. Nelssen, and S. S. Dritz. 2005. Lactose and specialty protein sources influence flow ability of nursery pig diets. Kansas Agricultural Experiment Station Research Reports. 0(10). doi:10.4148/2378-5977.6838
Carpenter, C. B., J. C. Woodworth, J. M. DeRouchey, M. D. Tokach, R. D. Goodband, S. S. Dritz, F. Wu, and J. L. Usry. 2018. Effects of increasing copper from tri-basic copper chloride or a copper-methionine chelate on growth performance of nursery pigs. Translational Animal Science. txy091. doi:10.1093/tas/txy091
Cemin, H. S., C. M. Vier, M. D. Tokach, S. S. Dritz, K. J. Touchette, J. C. Woodworth, J. M. DeRouchey, and R. D. Goodband. 2018. Effects of standardized ileal digestible histidine to lysine ratio on growth performance of 7- to 11-kg nursery pigs. Journal of Animal Science. 96:4713–4722. doi:10.1093/jas/sky319
Cervantes-Pahm, S. K., and H. H. Stein. 2010. Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. Journal of Animal Science. 88:2674–2683. doi:10.2527/jas.2009-2677
Clark, A. B., J. A. De Jong, J. M. DeRouchey, M. D. Tokach, S. S. Dritz, R. D. Goodband, and J. C. Woodworth. 2016. Effects of creep feed pellet diameter on suckling and nursery pig performance. Journal of Animal Science. 94(Suppl. 2):100–101. doi:10.2527/msasas2016-213
Clark, A. B., M. D. Tokach, J. M. DeRouchey, S. S. Dritz, J. C. Woodworth, R. D. Goodband, K. J. Touchette, and M. Allerson. 2017a. Effects of dietary lysine level and amino acid ratios on nursery pig performance, Journal of Animal Science. 95(Suppl. 2):82–83. doi:10.2527/asasmw.2017.12.174
Clark, A. B., M. D. Tokach, J. M. DeRouchey, S. S. Dritz, R. D. Goodband, J. C. Woodworth, K. J. Touchette, and N. M. Bello. 2017b. Modeling the effects of standardized ileal digestible isoleucine to lysine ratio on growth performance of nursery pigs. Translational Animal Science. 1:437-447. doi:10.2527/tas2017.0048
Clark, A. B., M. D. Tokach, J. M. DeRouchey, S. S. Dritz, R. D. Goodband, J. C. Woodworth, K. J. Touchette, N. M. Bello. 2017c. Modeling the effects of standardized ileal digestible valine to lysine ratio on growth performance of nursery pigs. Translational Animal Science. 1:448-457. doi:10.2527/tas2017.0049
Coble, K. F., J. M. DeRouchey, M. D. Tokach, S. S. Dritz, R. D. Goodband, J. C. Woodworth, and J. L. Usry. 2017. The effects of copper source and concentration on growth performance, carcass characteristics, and pen cleanliness in finishing pigs. Journal of Animal Science. 95:4052–4059. doi:10.2527/jas2017.1624
Collins, C. L., J. R. Pluske, R. S. Morrison, T. N. McDonald, R. J. Smits, D. J. Henman, I. Stensland, F. R. Dunshea. 2017. Post-weaning and whole-of-life performance of pigs is determined by live weight at weaning and the complexity of the diet fed after weaning. Animal Nutrition. 3:372-379. doi:10.1016/j.aninu.2017.01.001
Cromwell, G. L., G. L. Allee, and D. C. Mahan. 2008. Assessment of lactose level in the mid- to late-nursery phase on performance of weanling pigs. Journal of Animal Science. 86:127–133. doi:10.2527/jas.2006-831
Cromwell, G. L., M. D. Lindemann, H. J. Monegue, D. D. Hall, and D. E. Orr Jr. 1998. Tribasic copper chloride and copper sulfate as copper sources for weanling pigs. Journal of Animal Science. 76:118–123. doi:10.2527/1998.761118x
Back to top
D E F
da Rosa, D. P., M. M. Vieira, A. M. Kessler, T. M. de Moura, A. P. G. Frazzon, C. M. McManus, F. R. Marx, R. Melchior, and A. M. L. Ribeiro. 2015. Efficacy of hyperimmunized hen egg yolks in the control of diarrhea in newly weaned piglets. Food and Agricultural Immunology. 26:622-634. doi:10.1080/09540105.2014.998639
De Jong, J. A., J. M. DeRouchey, M. D. Tokach, R. D. Goodband, and S. S. Dritz. 2014. Effects of fine grinding corn or dried distillers grains with solubles (DDGS) and diet form on growth performance and caloric efficiency of 11–22-kg nursery pigs. Journal of Animal Sci. 92(Suppl. 2):355. doi:10.2527/jas.2015-9149
De Lange, C. F. M., J. Pluske, J. Gong, and C. M. Nyachoti. 2010. Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science. 134:124–134. doi:10.1016/j.livsci.2010.06.117
DeRouchey, J. M., M. D. Tokach, J. L. Nelssen, R. D. Goodband, S. S. Dritz, J. C. Woodworth, and B. W. James. 2002. Comparison of spray-dried blood meal and blood cells in diets for nursery pigs. Journal of Animal Science. 80:2879–2886. doi:10.2527/2002.80112879x
Edge, H. L., J. A. Dalby, P. Rowlinson, and M. A. Varley. 2005. The effect of pellet diameter on the performance of young pigs. Livestock Production Science. 97:203–209. doi:10.1016/j.livprodsci.2005.04.009
Engle, M. J. 1994. The role of soybean meal hypersensitivity in postweaning lag and diarrhea in piglets. Journal of Swine Health and Production. 2:7-10.
Back to top
G H I
Gebhardt, J. T., C. B. Paulk, M. D. Tokach, J. M. DeRouchey, R. D. Goodband, J. C. Woodworth, J. A. De Jong, K. F. Coble, C. R. Stark, C. K. Jones, and S. S. Dritz. 2018. Effect of roller mill configuration on growth performance of nursery and finishing pigs and milling characteristics. Journal of Animal Science. 96:2278–2292. doi:10.1093/jas/sky147
Gonçalves, M. A. D., S. Nitikanchana, M. D. Tokach, S. S. Dritz, N. M. Bello, R. D. Goodband, K. J. Touchette, J. L. Usry, J. M. DeRouchey, and J. C. Woodworth. 2015. Effects of standardized ileal digestible tryptophan:lysine ratio on growth performance of nursery pigs. Journal of Animal Science. 93:3909-3918. doi: 10.2527/jas.2015-9083
González-Vega, J. C., C. L. Walk, and H. H. Stein. 2015a. Effects of microbial phytase on apparent and standardized total tract digestibility of calcium in calcium supplements fed to growing pigs. Journal of Animal Science. 93:2255–2264. doi:10.2527/jas.2014-8215
González-Vega, J. C., C. L. Walk, and H. H. Stein. 2015b. Effect of phytate, microbial phytase, fiber, and soybean oil on calculated values for apparent and standardized total tract digestibility of calcium and apparent total tract digestibility of phosphorus in fish meal fed to growing pigs. Journal of Animal Science. 93:4808–4818. doi:10.2527/jas.2015-8992
González-Vega, J. C., Y. Liu, J. C. McCann, C. L. Walk, J. J. Loor, and H. H. Stein. 2016. Requirement for digestible calcium by eleven- to twenty-five-kilogram pigs as determined by growth performance, bone ash concentration, calcium and phosphorus balances, and expression of genes involved in transport of calcium in intestinal and kidney cells. Journal of Animal Science. 94:3321–3334. doi:10.2527/jas.2016-0444
Goodband, B., M. Tokach, S. Dritz, J. DeRouchey, and J. Woodworth. 2014. Practical starter pig amino acid requirements in relation to immunity, gut health and growth performance. Journal of Animal Science and Biotechnology. 5:12. doi:10.1186/2049-1891-5-12
Gourley, K. M., J. C. Woodworth, J. M. DeRouchey, S. S. Dritz, M. Ds Tokach, and R. D. Goodband. 2018. Effect of high doses of Natuphos E 5,000 G phytase on growth performance of nursery pigs. Journal of Animal Science. 96:570-578. doi:10.1093/jas/sky001
Graham, A., B. Knopf, L. Greiner, M. A. D. Goncalves, U. A. D. Orlando, and J. Connor. Evaluation of the lysine requirement of eleven- to twenty-three-kilogram nursery pigs. 2017. Journal of Animal Science. 95(Suppl. 2):146–147. doi:10.2527/asasmw.2017.301
Grinstead, G. S., R. D. Goodband, J. L. Nelssen, M. D. Tokach, and S. S. Dritz. 2000. A review of whey processing, products and components: effects on weanling pig performance. Journal of Applied Animal Research. 17:133–150. doi:10.1080/09712119.2000.9706296
Groesbeck, C. N., J. M. DeRouchey, M. D. Tokach, R. D. Goodband, S. S. Dritz, and J. L. Nelssen. 2009. Effects of irradiation of feed ingredients added to meal or pelleted diets on growth performance of weanling pigs. Journal of Animal Science. 87:3997–4002. doi:10.2527/jas.2008-1156
Gu, X., and D. Li. 2003. Fat nutrition and metabolism in piglets: A review. Animal Feed Science and Technology. 109:151–170. doi:10.1016/S0377-8401(03)00171-8
Guo, J. Y., C. E. Phillips, M. T. Coffey, S. W. Kim. 2015. Efficacy of a supplemental candy coproduct as an alternative carbohydrate source to lactose on growth performance of newly weaned pigs in a commercial farm condition. Journal of Animal Science. 93:5304–5312. doi:10.2527/jas.2015-9328
Hahn, J. D., and D. H. Baker. 1993. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. Journal of Animal Science. 71:3020–3024. doi:10.2527/1993.71113020x
Heo, J. M., F. O. Opapeju, J. R. Pluske, J. C. Kim, D. J. Hampson, and C. M. Nyachoti. 2013. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition. 97:207-37. doi:10.1111/j.1439-0396.2012.01284.x.
Hill, G. M., D. C. Mahan, S. D. Carter, G. L. Cromwell, R. C. Ewan, R. L. Harrold, A. J. Lewis, P. S. Miller, G. C. Shurson, and T. L. Veum. 2001. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance. Journal of Animal Science. 79:934–941. doi:10.2527/2001.794934x
Hill, G. M., G. L. Cromwell, T. D. Crenshaw, C. R. Dove, R. C. Ewan, D. A. Knabe, A. J. Lewis, G. W. Libal, D. C. Mahan, G. C. Shurson, L. L. Southern, and T. L. Veum. 2000. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). Journal of Animal Science. 78:1010–1016. doi:10.2527/2000.7841010x
Hollis, G. R., S. D. Carter, T. R. Cline, T. D. Crenshaw, G. L. Cromwell, G. M. Hill, S. W. Kim, A. J. Lewis, D. C. Mahan, P. S. Miller, H. H. Stein, and T. L. Veum. 2005. Effects of replacing pharmacological levels of dietary zinc oxide with lower dietary levels of various organic zinc sources for weanling pigs. Journal of Animal Science. 83:2123–2129. doi:10.2527/2005.8392123x
Hopwood, D. E., D. W. Pethick, J. R. Pluske, and D. J. Hampson. 2004. Addition of pearl barley to a rice-based diet for newly weaned piglets increases the viscosity of the intestinal contents, reduces starch digestibility and exacerbates post-weaning colibacillosis. British Journal of Nutrition. 92:419–427. doi:10.1079/BJN20041206
Back to top
J K L
Jayaraman, B., J. Htoo, and C. M. Nyachoti. 2015. Effects of dietary threonine:lysine ratioes and sanitary conditions on performance, plasma urea nitrogen, plasma-free threonine and lysine of weaned pigs. Animal Nutrition. 1:283-288. doi:10.1016/j.aninu.2015.09.003
Jha, R., and J. D. Berrocoso. 2015. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal. 9:1441–1452. doi:10.1017/S1751731115000919
Jiménez-Moreno, E., A. de Coca-Sinova, J. M. González-Alvarado, and G. G. Mateos. 2016. Inclusion of insoluble fiber sources in mash or pellet diets for young broilers. 1. Effects on growth performance and water intake. Poultry Science. 95:41–52. doi:10.3382/ps/pev309
Jondreville, C., P. S. Revy, and J. Y. Dourmad. 2003. Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livestock Production Science. 84:147-156. doi:10.1016/j.livprodsci.2003.09.011
Jones, A. M., F. Wu, J. C. Woodworth, M. D. Tokach, R. D. Goodband, J. M. DeRouchey, and S. S. Dritz. 2018a. Evaluating the effects of fish meal source and level on growth performance of nursery pigs. Translational Animal Science. 2:144–155. doi:10.1093/tas/txy010
Jones, A. M., F. Wu, J. Cs Woodworth, S. S. Dritz, M. D. Tokach, J. M. DeRouchey, and R. D. Goodband. 2018. Evaluation of dietary electrolyte balance on nursery pig performance. Translational Animal Science. txy090. doi:10.1093/tas/txy090
Jones, A. M., J. C. Woodworth, J. M. DeRouchey, M. D. Tokach, R. D. Goodband, and S. S. Dritz. 2018b. Evaluating the effects of replacing fish meal with HP 300 on nursery pig performance. Journal of Animal Science. 96:178–179. doi:10.1093/jas/sky073.329
Jones, C. K., J. M. DeRouchey, J. L. Nelssen, M. D. Tokach, S. S. Dritz, and R. D. Goodband. 2010. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance. Journal of Animal Science. 88:1725–1732. doi:10.2527/jas.2009-2110
Kahindi, R., A. Regassa, J. Htoo, and M. Nyachoti. 2017. Optimal sulfur amino acid to lysine ratio for post weaning piglets reared under clean or unclean sanitary conditions. Animal Nutrition. 3:380-385. doi:10.1016/j.aninu.2017.08.004
Keegan, T. P., J. M. DeRouchey, J. L. Nelssen, M. D. Tokach, R. D. Goodband, and S. S. Dritz. 2004. The effects of poultry meal source and ash level on nursery pig performance. Journal of Animal Science. 82:2750–2756. doi:10.2527/2004.8292750x
Kerr, B. J., and G. C. Shurson, 2013. Strategies to improve fiber utilization in swine. Journal of Animal Science and Biotechnology. 4:11-23. doi:10.1186/2049-1891-4-11
Kerr, B. J., M. T. Kidd, J. A. Cuaron, K. L. Bryant, T. M. Parr, C. V. Maxwell, and E. Weaver. 2004. Utilization of spray-dried blood cells and crystalline isoleucine in nursery pig diets. Journal of Animal Science. 82:2397-2404. doi:10.2527/2004.8282397x
Kim, J. C., B. P. Mullan, D. J. Hampson, and J. R. Pluske. 2008. Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. British Journal of Nutrition. 99:1217–1225. doi:10.1017/S0007114507868462
Kim, S. W., and R. A. Easter. 2001. Nutritional value of fish meals in the diet for young pigs. Journal of Animal Science. 79:1829. doi:10.2527/2001.7971829x
Kim, S. W., E. van Heugten, F. Ji, C. H. Lee, and R. D. Mateo. 2010. Fermented soybean meal as a vegetable protein source for nursery pigs: I: Effects on growth performance of nursery pigs. Journal of Animal Science. 88:214–224. doi:10.2527/jas.2009-1993
Kong, C., H. G. Kang, B. G. Kim, and K. H. Kim. 2014. Ileal digestibility of amino acids in meat meal and soybean meal fed to growing pigs. Asian-Australasian Journal of Animal Sciences. 27:990–995. doi:10.5713/ajas.2014.14217
Laird, S., I. Kühn, and H. M. Miller. 2018. Super-dosing phytase improves the growth performance of weaner pigs fed a low iron diet. Animal Feed Science and Technology. 242:150-160. doi:10.1016/j.anifeedsci.2018.06.004
Lei, X. J., J. Y. Chung, J. H. Park, and I. H. Kim. 2017. Evaluation of different dietary electrolyte balance in weanling pigs diets. Animal Feed Science and Technology. 226:98-102. doi:10.1016/j.anifeedsci.2017.02.014
Lenehan, N. A., J. M. DeRouchey, R. D. Goodband, M. D. Tokach, S. S. Dritz, J. L. Nelssen, C. N. Groesbeck, and K. R. Lawrence. 2007. Evaluation of soy protein concentrates in nursery pig diets. Journal of Animal Science. 85:3013–3021. doi:10.2527/jas.2007-0071
Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, J. D. Hancock, G. L. Allee, R. D. Goodband, and R. D. Klemm. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. 68:1790-1799. doi:10.2527/1990.6861790x
Liu, Y., C. D. Espinosa, J. J. Abelilla, G. A. Casas, L. V. Lagos, S. A. Lee, W. B. Kwon, J. K. Mathai, D. M. D. L. Navarro, N. W. Jaworski, and H. H. Stein. 2018. Non-antibiotic feed additives in diets for pigs: a review. Animal Nutrition. 4:113-125. doi:10.1016/j.aninu.2018.01.007
Back to top
M N O
Madec, F., N. Bridoux, S. Bounaix, and A. Jestin. 1998. Measurement of digestive disorders in the piglet at weaning and related risk factors. Preventive Veterinary Medicine. 35:53-72. doi:10.1016/S0167-5877(97)00057-3
Mahan, D. C., and E. A. Newton. 1993. Evaluation of feed grains with dried skim milk and added carbohydrate sources on weanling pig performance. Journal of Animal Science. 71:3376–3382. doi:10.2527/1993.71123376x
Mahan, D. C., N. D. Fastinger, and J. C. Peters. 2004. Effects of diet complexity and dietary lactose levels during three starter phases on postweaning pig performance. Journal of Animal Science. 82:2790–2797. doi:10.2527/2004.8292790x
Main, R. G., S. S. Dritz, M. D. Tokach, R. D. Goodband, and J. L. Nelssen. 2004. Increasing weaning age improves pig performance in a multi-site production system. Journal of Animal Science. 82:1499-1507. doi:10.2527/2004.8251499x
Main, R. G., S. S. Dritz, M. D. Tokach, R. D. Goodband, J. L. Nelssen, and J. M. Derouchey. 2008. Effects of feeding growing pigs less or more than their lysine requirement in early and late finishing on overall performance. Professional Animal Scientist. 24:76-87. doi:10.15232/S1080-7446(15)30813-5
Mavromichalis, I., J. D. Hancock, R. H. Hines, B. W. Senne, and H. Cao. 2001. Lactose, sucrose, and molasses in simple and complex diets for nursery pigs. Animal Feed Science and Technology. 93:127-135. doi:10.1016/S0377-8401(01)00287-5
McDonald, D., D. Pethick, B. Mullan, and D. Hampson. 2001. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. British Journal of Nutrition. 86:487–498. doi:10.1079/BJN2001416
Mclamb, B. L., A. J. Gibson, E. L. Overman, C. Stahl, and A. J. Moeser. 2013. Early weaning stress in pigs impairs innate mucosal immune responses to enterotoxigenic E. coli challenge and exacerbates intestinal injury and clinical disease. PLoS ONE. 8:e59838. doi:10.1371/journal.pone.0059838.
Merriman, L. A., C. L. Walk, and H. H. Stein. 2016. The effect of microbial phytase on the apparent and standardized total tract digestibility of calcium in feed ingredients of animal origin. Journal of Animal Science. 94(Suppl. 2):110. doi:10.2527/msasas2016-240
Millet, S., M. Aluwé, A. Van den Broeke, F. Leen, J. De Boever, and S. De Campeneere. 2018a. Review: Pork production with maximal nitrogen efficiency. Animal. 12:1060-1067. doi:10.1017/S1751731117002610
Millet, S., M. Aluwé, A. Van den Broeke, J. De Boever, B. de Witte, L. Douidah, A. van den Broeke, F. Leen, C. de Cuyper, B. Ampe, and S. De Campeneere. 2018b. The effect of crude protein reduction on performance and nitrogen metabolism in piglets (four to nine weeks of age) fed two dietary lysine levels. Journal of Animal Science. 96:3824-3836. doi:10.1093/jas/sky254
Moeser, A. J., K. A. Ryan, P. K. Nighot, and A. T. Blikslager. 2007. Gastrointestinal dysfunction induced by early weaning is attenuated by delayed weaning and mast cell blockade in pigs. American Journal of Physiology and Gastrointestinal Liver Physiology. 293:413–421. doi:10.1152/ajpgi.00304.2006
Molist, F., A. Gómez de Segura, J. F. Pérez, S. K. Bhandari, D. O. Krause, and C. M. Nyachoti CM. 2010. Effect of wheat bran on the health and performance of weaned pigs challenged with Escherichia coli K88+. Livestock Science. 133:214–217. doi:10.1016/j.livsci.2010.06.067
Molist, F., R. G. Hermes, A. G. de Segura, S. M. Martín-Orúe, J. Gasa, E. G. Manzanilla, and J. F. Pérez. 2011. Effect and interaction between wheat bran and zinc oxide on productive performance and intestinal health in post-weaning piglets. British Journal of Nutrition. 105:1592–600. doi:10.1017/S0007114510004575
Montagne, L., F. S. Cavaney, D. J. Hampson, J. P. Lallès, and J. R. Pluske. 2004. Effect of diet composition on postweaning colibacillosis in piglets. Journal of Animal Science. 82:2364–2374. doi:10.2527/2004.8282364x
Montagne, L., J. R. Pluske, and D. J. Hampson. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology. 108:95–117. doi:10.1016/S0377-8401(03)00163-9
Morris, G. K., W. T. Martin, W. H. Shelton, J. G. Wells, and P. S. Brachman. 1970. Salmonellae in fish meal plants: Relative amounts of contamination at various stages of processing and a method of control. Applied Microbiology. 19:401-408.
Myers, A. J., R. D. Goodband, M. D. Tokach, S. S. Dritz, J. M. DeRouchey, and J. L. Nelssen. 2014. The effects of porcine intestinal mucosa protein sources on nursery pig growth performance. Journal of Animal Science. 92:783–792. doi:10.2527/jas.2013-6551
Naranjo, V. D., T. D. Bidner, and L. L. Southern. 2010. Comparison of dried whey permeate and a carbohydrate product in diets for nursery pigs. Journal of Animal Science. 88:1868–1879. doi:10.2527/jas.2009-2438
Narayanappa, A. T., H. Sooryanarain, J. Deventhiran, D. Cao, B. A. Venkatachalam, D. Kambiranda, T. LeRoith, C. L. Heffron, N. Lindstrom, K. Hall, P. Jobst, C. Sexton, X.-J. Meng, and S. Elankumaran. 2015. A novel pathogenic mammalian orthoreovirus from diarrheic pigs and swine blood meal in the United States. mBio. 6:e00593-15. doi:10.1128/mBio.00593-15
National Research Council. 2012. Nutrient Requirements of Swine. 11th Revised Edition. The National Academies Press, Washington, DC. doi:10.17226/13298
Nemechek, J. E., F. Wu, M. D. Tokach, S. S. Dritz, R. D. Goodband, J. M. DeRouchey, and J. C. Woodworth. 2018. Effect of standardized ileal digestible lysine on growth and subsequent performance of weanling pigs. Translational Animal Science. 2:156-161. doi:10.1093/tas/txy011
Nemechek, J. E., M. D. Tokach, S. S. Dritz, E. D. Fruge, E. L. Hansen, R. D. Goodband, J. M. DeRouchey, and J. C. Woodworth. 2015. Effects of diet form and feeder adjustment on growth performance of nursery and finishing pigs. Journal of animal science. 93:4172-4180. doi:10.2527/jas.2015-9028
Nessmith, W. B., M. D. Tokach, R. D. Goodband, and J. L. Nelssen. 1997. Defining quality of lactose sources used in swine diets. Swine Health and Production. 4:145–149.
Nichols, G. E., C. M. Vier, A. B. Lerner, M. B. Menegat, H. S. Cemin, C. K. Jones, J. M. DeRouchey, M. D. Tokach, B. D. Goodband, J. C. Woodworth, and S. S. Dritz. 2018. Effects of standardized ileal digestible lysine on 7-15 kg nursery pigs growth performance. Journal of Animal Science. 96(Suppl. 2):258–259. doi:10.1093/jas/sky073.480
Back to top
P Q R
Pérez, V. G., A. M. Waguespack, T. D. Bidner, L. L. Southern, T. M. Fakler, T. L. Ward, M. Steidinger, and J. E. Pettigrew. 2011. Additivity of effects from dietary copper and zinc on growth performance and fecal microbiota of pigs after weaning. Journal of Animal Science. 89:414–425. doi:10.2527/jas.2010-2839
Pluske, J. R., I. H. Williams, and F. X. Aherne. 1996. Maintenance of villous height and crypt depth in piglets by providing continuous nutrition after weaning. Animal Science. 62:131-144. doi:10.1017/S1357729800014417
Qian, H., E. T. Kornegay, and D. E. Conner, Jr. 1996. Adverse effects of wide calcium:phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels. Journal of Animal Science. 74:1288–1297. doi:10.2527/1996.7461288x
Reinhart, G. A., and D. C. Mahan. 1986. Effect of various calcium:phosphorus ratios at low and high dietary phosphorus for starter, grower and finishing swine. Journal of Animal Science. 63:457–466. doi:10.2527/jas1986.632457x
Remus, A., I. Andretta, M. Kipper, C. R. Lehnen, C. C. Klein, P. A. Lovatto, and L. Hauschild. 2013. A meta-analytical study about the relation of blood plasma addition in diets for piglets in the post-weaning and productive performance variables. Livestock Science. 155:294–300. doi:10.1016/j.livsci.2013.04.020
Rojas, O. J., and H. H. Stein. 2017. Processing of ingredients and diets and effects on nutritional value for pigs. Journal of Animal Science and Biotechnology. 8:48-61. doi:10.1186/s40104-017-0177-1
Back to top
S T U
Shawk, D. J., M. D. Tokach, R. D. Goodband, S. S. Dritz, J. C. Woodworth, J. M. DeRouchey, A. B. Lerner, F. Wu, C. M. Vier, M. M. Moniz, and K. N. Nemechek. 2018a. Effects of sodium and chloride source and concentration on nursery pig growth performance. Journal of Animal Science. sky429. doi:10.1093/jas/sky429
Shawk, D. J., R. D. Goodband, M. D. Tokach, S. S. Dritz, J. M. DeRouchey, J. C. Woodworth, A. B. Lerner, and H. E. Williams. 2018b. Effects of added dietary salt on pig growth performance. Translational Animal Science. 2:396-406. doi:10.1093/tas/txy085
Shelton, N. W., M. D. Tokach, J. L. Nelssen, R. D. Goodband, S. S. Dritz, J. M. DeRouchey, and G. M. Hill. 2011. Effects of copper sulfate, tri-basic copper chloride, and zinc oxide on weanling pig performance. Journal of Animal Science. 89:2440–2451. doi:10.2527/jas.2010-3432
Skinner, L. D., C. L. Levesque, D. Wey, M. Rudar, J. Zhu, S. Hooda, and C. F. M. De Lange. 2014. Impact of nursery feeding program on subsequent growth performance, carcass quality, meat quality, and physical and chemical body composition of growing-finishing pigs. Journal of Animal Science. 92:1044-1054. doi:10.2527/jas.2013-6743
Smith, F., J. E. Clark, B. L. Overman, C. C. Tozel, J. H. Huang, J. E. F. Rivier, A. T. Blisklager, and A. J. Moeser. 2010. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. American Journal of Physiology and Gastrointestinal Liver Physiology. 298:352-363. doi:10.1152/ajpgi.00081.2009.
Smith, L. F., A. D. Beaulieu, J. F. Patience, H. W. Gonyou, and R. D. Boyd. 2004. The impact of feeder adjustment and group size-floor space allowance on the performance of nursery pigs. Journal of Swine Health and Production. 12:111-118.
Song, M., T. M. Che, Y. Liu, J. A. Soares, B. G. Harmon, J. E. Pettigrew. 2012. Effects of dietary spray-dried egg on growth performance and health of weaned pigs. Journal of Animal Science. 90:3080–3087. doi:10.2527/jas.2011-4305
Stahly, T. S., G. L. Cromwell, G. L., and H. J. Monegue. 1980. Effect of single additions and combinations of copper and antibiotics on the performance of weanling pigs. Journal of Animal Science. 51:1347–1351. doi:10.2527/jas1981.5161347x
Stark, C. R., K. C. Behnke, J. D. Hancock, and R. H. Hines. 1993. Pellet quality affects growth performance of nursery and finishing pigs. Kansas Agricultural Experiment Station Research Reports. 71–74.
Steidinger, M. U., R. D. Goodband, M. D. Tokach, S. S. Dritz, J. L. Nelssen, L. J. Mckinney, B. S. Borg, and J. M. Campbell. 2000. Effects of pelleting and pellet conditioning temperatures on weanling pig performance. Journal of Animal Science. 78:3014–3018. doi:10.2527/2000.78123014x
Stein, H. H., L. V. Lagos, and G. A. Casas. 2016. Nutritional value of feed ingredients of plant origin fed to pigs. Animal Feed Science and Technology. 218:33–69. doi:10.1016/j.anifeedsci.2016.05.003
Sulabo, R. C., J. K. Mathai, J. L. Usry, B. W. Ratliff, D. M. McKilligan, J. D. Moline, G. Xu, and H. H. Stein. 2013. Nutritional value of dried fermentation biomass, hydrolyzed porcine intestinal mucosa products, and fish meal fed to weanling pigs. Journal of Animal Science. 91:2802–2811. doi:10.2527/jas.2012-5327
Sulabo, R. C., J. R. Bergstrom, M. D. Tokach, J. M. DeRouchey, R. D. Goodband, J. L. Nelssen, and S. S. Dritz. 2009. Effects of creep diet complexity on individual consumption characteristics and growth performance of neonatal and weanling pigs. Kansas Agricultural Experiment Station Research Reports. 1020:51-64.
Sulabo, R. C., M. D. Tokach, S. S. Dritz, R. D. Goodband, J. M. DeRouchey, and J. L. Nelssen. 2010. Effects of varying creep feeding duration on the proportion of pigs consuming creep feed and neonatal pig performance. Journal of Animal Science. 88:3154-3162. doi:10.2527/jas.2009-2134
Tokach, M. D., J. E. Pettigrew, L. J. Johnston, M. Øverland, J. W. Rust, and S. G. Cornelius. 1995. Effect of adding fat and(or) milk products to the weanling pig diet on performance in the nursery and subsequent grow-finish stages. Journal of Animal Science. 73:3358–3368. doi:10.2527/1995.73113358x
Traylor, S. L., G. L. Cromwell, and M. D. Lindemann. 2005. Bioavailability of phosphorus in meat and bone meal for swine. Journal of Animal Science. 83:1054–1061. doi:10.2527/2005.8351054x
Turlington, W. H., G. L. Allee, and J. L. Nelssen. 1989. Effects of protein and carbohdyrate sources on digestibility and digesta flow rate in weaned pigs fed a high-fat, dry diet. Journal of Animal Science. 67:2333–2340. doi:10.2527/jas1989.6792333x
Back to top
V W X
van den Brand, H., D. Wamsteeker, M. Oostindjer, L. C. M. van Enckevort, A. F. B. van der Poel, B. Kemp, and J. E. Bolhuis. 2014. Effects of pellet diameter during and after lactation on feed intake of piglets pre- and postweaning. Journal of Animal Science. 92:4145–4153. doi:10.2527/jas.2014-7408
van Dijk, A.J., H. Everts, M. J. A. Nabuurs, R. J. C. F. Margry, and A. C. Beynen. 2001. Growth performance of weanling pigs fed spray-dried animal plasma: a review. Livestock Production Science. 68:263–274. doi:10.1016/S0301-6226(00)00229-3
Vier, C. M., F. Wu, S. S. Dritz, M. D. Tokach, M. A. D. Goncalves, U. A. D. Orlando, J. C. Woodworth, R. D. Goodband, and J. M. DeRouchey. 2017. Standardized total tract digestible phosphorus requirement of 11- to 25-kg pigs. Journal of Animal Science. 95(Suppl. 2):56. doi:10.2527/asasmw.2017.119
Walk, C. L., P. Wilcock, and E. Magowan. 2015. Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal. 9:1145-1152. doi:10.1017/S175173111500035X
Wallace, R. J., J. Gropp, N. Dierick, L. G. Costa, G. Martelli, P. G. Brantom, V. Bampidis, d. W. Renshaw, and L. Leng. 2016. Risks associated with endotoxins in feed additives produced by fermentation. Environmental Health. 15:5-11. doi:10.1186/s12940-016-0087-2
Wellock, I. J., P. D. Fortomaris, J. G. Houdijk, J. Wiseman, and I. Kyriazakis. 2008. The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with enterotoxigenic Escherichia coli. British Journal of Nutrition. 99:520–530. doi:10.1017/S0007114507819167
Weng, R. -C. 2016. Dietary fat preference and effects on performance of piglets at weaning. Asian-Australasian Journal of Animal Sciences. 30:834–842. doi:10.5713/ajas.16.0499
Whang, K. Y., F. K. Mckeith, S. W. Kim, and R. A. Easter. 2000. Effect of starter feeding program on growth performance and gains of body components from weaning to market weight in swine. Journal of Animal Science. 78:2885-2895. doi:10.2527/2000.78112885x
Wolter, B. F., and M. Ellis. 2001. The effects of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Canadian Journal of Animal Science. 81:363-369. doi:10.4141/A00-100
Wolter, B. F., M. Ellis, B. P. Corrigan, J. M. Dedecker, S. E. Curtis, E. N. Parr, and W. M. Webel. 2003. Impact of early postweaning growth rate as affected by diet complexity and space allocation on subsequent growth performance of pigs in a wean- to-finish production system. Journal Animal Science. 81:353-359. doi:10.2527/2003.812353x
Wu, F., J. C. Woodworth, M. D. Tokach, J. M. DeRouchey, S. S. Dritz, and R. D. Goodband. 2018b. Standardized total tract digestible phosphorus requirement of 13- to 28-lb pigs fed diets with or without phytase. Kansas Agricultural Experiment Station Research Reports. 4(9). doi:10.4148/2378-5977.7665
Wu, F., M. D. Tokach, S. S. Dritz, J. C. Woodworth, J. M. DeRouchey, R. D. Goodband, M. A. D. Gonçalves, and J. R. Bergstrom. 2018a. Effects of dietary calcium to phosphorus ratio and addition of phytase on growth performance of nursery pigs. Journal of Animal Science. 96:1825–1837. doi:10.1093/jas/sky101
Back to top
Y Z
Yazdankhah, S., K. Rudi, and A. Bernhoft. 2014. Zinc and copper in animal feed – development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microbial Ecology in Health and Disease. 25:25862-25869. doi:10.3402/mehd.v25.25862.
Yuan, L., J. Chang, Q. Yin, M. Lu, Y. Di, P. Wang, Z. Wang, E. Wang, and F. Lu. 2017. Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Animal Nutrition. 3:19–24. doi:10.1016/j.aninu.2016.11.003
Zeng, Z. K., D. Wang, X. S. Piao, P. F. Li, H. Y. Zhang, C. X. Shi, and S. K. Yu. 2014. Effects of adding super dose phytase to the phosphorus-deficient diets of young pigs on growth performance, bone quality, minerals and amino acids digestibilities. Asian-Australasian Journal of Animal Science. 27:237-246. doi:10.5713/ajas.2013.13370